Spectral analysis and spectral symbol of matrices in isogeometric Galerkin methods

نویسندگان

  • Carlo Garoni
  • Carla Manni
  • Stefano Serra Capizzano
  • Debora Sesana
  • Hendrik Speleers
چکیده

A linear full elliptic second order Partial Differential Equation (PDE), defined on a d-dimensional domain Ω, is approximated by the isogeometric Galerkin method based on uniform tensor-product Bsplines of degrees (p1, . . . , pd). The considered approximation process leads to a d-level stiffness matrix, banded in a multilevel sense. This matrix is close to a d-level Toeplitz structure when the PDE coefficients are constant and the physical domain Ω is just the hypercube (0, 1)d without using any geometry map. In such a simplified case, a detailed spectral analysis of the stiffness matrices has been carried out in a previous work. In this paper, we complete the picture by considering non-constant PDE coefficients and an arbitrary domain Ω, parameterized with a non-trivial geometry map. We compute and study the spectral symbol of the related stiffness matrices. This symbol describes the asymptotic eigenvalue distribution when the fineness parameters tend to zero (so that the matrix-size tends to infinity). The mathematical technique used for computing the symbol is based on the theory of Generalized Locally Toeplitz (GLT) sequences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lusin theorem, GLT sequences and matrix computations: An application to the spectral analysis of PDE discretization matrices

We extend previous results on the spectral distribution of discretization matrices arising from Bspline Isogeometric Analysis (IgA) approximations of a general d-dimensional second-order elliptic Partial Differential Equation (PDE) with variable coefficients. First, we provide the spectral symbol of the Galerkin B-spline IgA stiffness matrices, assuming only that the PDE coefficients belong to ...

متن کامل

Symbol-Based Multigrid Methods for Galerkin B-Spline Isogeometric Analysis

We consider the stiffness matrices coming from the Galerkin B-spline isogeometric analysis approximation of classical elliptic problems. By exploiting specific spectral properties compactly described by a symbol, we design efficient multigrid methods for the fast solution of the related linear systems. We prove the optimality of the two-grid methods (in the sense that their convergence rate is ...

متن کامل

Spectral analysis and spectral symbol for the 2D curl-curl (stabilized) operator with applications to the related iterative solutions

In this paper, we study structural and spectral features of linear systems of equations arising from Galerkin approximations of Hpcurlq elliptic variational problems, based on the Isogeometric Analysis (IgA) approach. Such problems arise in Time Harmonic Maxwell and magnetostatic problems, as well in the preconditioning of MagnetoHydroDynamics equations, and lead to large linear systems, with d...

متن کامل

On the spectrum of stiffness matrices arising from isogeometric analysis

We study the spectral properties of stiffness matrices that arise in the context of isogeometric analysis for the numerical solution of classical second order elliptic problems. Motivated by the applicative interest in the fast solution of the related linear systems, we are looking for a spectral characterization of the involved matrices. In particular, we investigate non-singularity, condition...

متن کامل

Spectral analysis of matrices in isogeometric collocation methods

We consider a linear full elliptic second order partial differential equation in a d-dimensional domain, d ≥ 1, approximated by isogeometric collocation methods based on uniform B-splines of degrees p := (p1, . . . , pd), pj ≥ 2, j = 1, . . . , d. We give a construction of the inherently non-symmetric matrices arising from this approximation technique and we perform an analysis of their spectra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 86  شماره 

صفحات  -

تاریخ انتشار 2017